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During pregnancy, women are tolerant of their semi-allogeneic fetus whilst not
being immunosuppressed and indeed readily form alloantibodies. This ‘Immunolog-
ical Paradox of Pregnancy’ may be explained by an understanding of placental
anatomy and immunology. Trophoblast cells form the interface between the fetus
and maternal tissues and blood and escape allorecognition because they lack classi-
cal human leucocyte antigen (HLA) class I and II molecules. Local immunoregula-
tion, or tolerance, in the decidua is mediated partly by HLA-G+ extravillous
trophoblasts (EVT) that invade the tissue and prevent killing by maternal natural
killer cells, cytotoxic T cells and macrophages. Placental hormones orchestrate the
composition and regulatory function of maternal immune cells. In contrast, syncy-
tiotrophoblast cells at the surface of chorionic villi, in contact with maternal blood,
maintain a state of mild maternal systemic immunity via activation of innate
immunity and skewing towards humoral immunity. This enables maintenance of a
healthy immune system in pregnant women and robust protective antibody
responses to pathogens whilst enabling survival of the fetus. However, this has the
unfortunate consequence that pregnant women readily form alloantibodies to
incompatible alloantigens on fetal red cells, platelets and leucocytes if fetomaternal
haemorrhage (FMH) occurs. The antibodies are initially low affinity but after re-
immunization with further FMH become functionally effective, high-titre IgG.
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pregnancy.

Introduction

Fetal and neonatal alloimmune thrombocytopenia (FNAIT)

is the platelet ‘equivalent’ of haemolytic disease of the fetus

and newborn (HDFN). Differences in the development of

alloantibodies to platelets or red cells may indicate dissimi-

lar aetiologies. Approximately 80% of cases of FNAIT are

caused by antibodies to the human platelet antigen (HPA)-

1a [1], but this alloantibody is rarely formed after transfu-

sion [2, 3]. Anti-HPA-5b and anti-HPA-1b are by far the

most common HPA specificities induced by transfusion

[2, 3] and also the second and third most frequent alloanti-

bodies causing FNAIT [1]. In contrast, anti-D is the most

frequent red cell antibody formed after both pregnancy and

transfusion. Therefore, it would appear that the anti-HPA-

1a response is unique in that pregnancy is almost essential

for its induction.

In fact, pregnancy appears to be a physiological condi-

tion that is conducive to alloantibody responses. Most red

cell blood groups, and platelet and neutrophil alloantigens,

were discovered by serological investigations of fetal

alloimmune cytopenias resulting from immunization of

pregnant or post-partum women by alloantigens on fetal

blood. Anti-D (IgM) was the first to be recognized 70 years

ago [4].

The human leucocyte antigen (HLA) system was also elu-

cidated mainly by the use of sera from multigravidae, after

studies demonstrating leucocyte antibodies were often

induced by pregnancy [5, 6]. These sera were the mainstay

of HLA-typing reagents before the molecular era. HLA anti-

bodies are not, however, usually deleterious during preg-

nancy, and curiously, HLA allorecognition by pregnant

women of their semi-allogeneic offspring actually appears
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to be important for successful pregnancy [7]. Fertility is

reduced among consanguineous couples, spontaneous

abortions being more likely with HLA concordance of

mother and fetus [8]. Vertical transmission (mother to fetus)

of HIV was found greater (31%) with maximum HLA

matching of mother and fetus compared with the protection

afforded by no HLA class I match, with only 3% transmis-

sion [9]. HLA-C-incompatible pregnancies were associated

with induction of T-regulatory lymphocytes (Treg) in

maternal decidua [10]. Thus, rather surprisingly, materno-

fetal mismatch of HLA class I enhances placental function

and is beneficial to both mother and baby.

Sir Peter Medawar studied transplantation for which he

received the Nobel Prize for Medicine in 1960. He proposed

the concept of the fetal allograft and hypothesized that sur-

vival of the semi-allogeneic fetus occurs either through

anatomical separation of mother and fetus, lack of fetal

antigen expression or its exposure to the maternal immune

system, or from a functional suppression of maternal lym-

phocytes [11]. However, pregnant women are not immuno-

suppressed and readily make alloantibodies to blood cells.

The ‘Immunological Paradox of Pregnancy’ is not yet com-

pletely understood.

The placenta and amniotic sac form a physical barrier

between the mother and fetus. Knowledge of placental

anatomy and recent information from immunological stud-

ies at various interfaces may help explain the paradox.

Anatomy and development of the placenta

After conception, cellular division of the fertilized egg

forms the blastocyst. This is a ball of cells with the entire

outer surface comprised of trophoblast cells and with a

cluster of cells in the centre, the embryoid body, from

which the embryo and then fetus will develop. On contact

of the blastocyst with maternal endometrial epithelial cells

bordering the decidua (the lining of the uterus), these cyto-

trophoblast (CT) cells at the contact site fuse to form syncy-

tiotrophoblast (ST; Fig. 1a). The ST acquires an invasive

phenotype. Several enzymes are secreted by ST to degrade

the extracellular matrix (ECM) and allow invasion of the

blastocyst into the maternal tissue (Fig. 1b,c). At this stage,

about 1 week after conception, human chorionic gonado-

trophin (hCG) is produced by ST to maintain the pregnancy

(this hormone is detected by pregnancy tests). Projections

of the ST known as villous sprouts erode the decidua basalis

and spaces (lacunae) develop in the ST. These gradually fill

with interstitial fluid and later with maternal blood (Fig. 1

d). CT near the embryoblast proliferates and moves out

inside the villi, forming a cell layer underlying the ST. Both

the CT (trophoblast stem cells) and ST (terminally differen-

tiated, non-proliferative syncytium) lack classical HLA

class I. As the villi enlarge and branch, they develop a

mesoderm stromal core of ECM. Blood vessels from the

developing circulation of the embryo ⁄ fetus grow through

the ECM (Fig. 1e). Blood flows to and from the developing

fetus and placenta via the umbilical cord. Fetal and mater-

nal blood does not normally mix.

By 3 weeks post-conception, columns of proliferative CT

protrude from the tips of the chorionic villi, becoming EVT.

They migrate into the decidua, forming interstitial tropho-

blasts, and also into the lumen of spiral arteries (Fig. 1e).

Here, these endovascular trophoblasts degrade the endothe-

lium rendering the spiral arteries flaccid, ensuring low

resistance to uterine arterial blood flow and enabling maxi-

mum oxygenation of the placental villi. These differenti-

ated types of invasive EVT do not express HLA class I A or

B antigens but, almost uniquely, express HLA-G (Fig. 2a), a

non-classical HLA class I molecule [12].

As the embryo develops into a fetus and protrudes

into the uterine lumen, after 3–4 weeks, it is surrounded

by the amniotic membrane that forms as an inner lining

to the chorionic membrane (Fig. 1f). The fetus is pro-

tected by amniotic fluid. When the fetus grows, the cho-

rionic membrane outside the site of placental attachment

retains some residual trophoblast cells that contact the

inner lining of the uterus. The chorion is the major part

of the placenta, comprising blood vessels, connective tis-

sue and trophoblasts. This type of placentation is known

as haemochorial because maternal blood is in direct

contact with the chorionic villi (Fig. 1f). The structure of

the placenta at the implantation site remains essentially

the same for the remainder of pregnancy, and it grows

to become a disk about 20 · 2–4 cm at term (40-week

gestation).

As pregnancy progresses, the structure of the villi (Fig. 3

a,b) adapts to maximize placental transport to supply the

needs of the growing fetus. The villi become extremely

numerous, highly vascular and increasingly slender with

multiple branches and lobes (Fig. 3a,b). The capillaries

become situated predominantly at the periphery of villi,

underlying the ST (Fig. 3c). Villous CT cells no longer form

a complete cell layer under the ST.

Placental transport

The chorionic villi transfer nutrients and oxygen to the

fetal blood and waste products and carbon dioxide back to

the maternal circulation. The ST is an absorptive epithelium

and has the major role in transport. It is metabolically very

active and has numerous vacuoles evident ultrastructurally

(Fig. 3c), many of which are involved in placental transfer

of substances including amino acids, low density lipopro-

tein and IgG. Microvilli (a brush border) on the ST (Fig. 3c)

increase the villous surface area tenfold to approximately

100 m2 to maximize absorption [13].

Immunobiology of pregnancy 3

� 2011 The Author(s)
Vox Sanguinis � 2011 International Society of Blood Transfusion, Vox Sanguinis (2012) 102, 2–12



Materno-fetal transport of IgG takes place to confer pas-

sive immunity to the fetus, so that after birth, the infant will

be protected against infections whilst its own immune sys-

tem is developing. Active transport of IgG occurs via the

neonatal Fc receptor (FcRn) in the ST [14, 15]. Maternal

plasma is endocytosed at the apical membrane of the ST, and

intracellularly, the endocytotic vacuoles become slightly

acidified to approximately pH 6Æ0 compared with pH 7Æ4 of

plasma. FcRn is present on the ST and endosomal mem-

branes, and then under the acidified conditions, it binds IgG

through histidine residues on the CH2 and CH3 domains of

IgG. Sorting of the endosomes then occurs, with vacuoles

containing IgG–FcRn complexes being transferred across

the cell, whilst the contents of those vacuoles lacking these

complexes undergo lysosomal degradation [16]. IgM and

IgA are not transferred because they have no specific

receptors. On reaching the basal (fetal) side of the ST, the

endosomes merge with the plasma membrane, and with

the rise in pH of the interstitial fluid, IgG dissociates and

is released intact, from where it diffuses into the fetal

capillaries.

Fetal material released into maternal blood

Three types of fetal or placental material can be detected in

the maternal circulation (Fig. 3c) [17]. Fetal blood may

enter, by fetomaternal haemorrhage (FMH), after damage to

chorionic villi. In contrast, fetal (placental) DNA and ST

debris are detectable in maternal blood from about 7 weeks

of gestation, in increasing amounts as the placenta grows.

Over half a century ago, it was recognized that fetal red-

blood-cells (RBC) could leak into maternal blood through

transplacental haemorrhage and, if fetal RBC were D-posi-

tive and the mother was D-negative, could stimulate her to
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Fig. 1 Development of the placenta. (a) The blastocyst contacts uterine epithelium, and then, syncytiotrophoblast (ST) forms by fusion of cytotrophoblast

(CT) cells at this site. (b) As the blastocyst embeds into the decidua, ST proliferates and spaces (lacunae) form in the syncytium. (c) Sprouts (villi) of the

syncytium invade the decidua. (d) CT cells by the extracellular matrix (ECM) proliferate and migrate down the villi, whilst the lacunae begin to fill with

maternal blood from the uterine arteries and veins. Maternal blood contacts the ST. (e) After about a month when the fetal blood and circulatory system

forms, blood vessels in the ECM penetrate the villi and begin to take up nourishment and oxygen from the blood in the intervillous spaces. The villi prolifer-

ate and branch. They are covered by a double layer of trophoblast, CT cells and ST. At the tips of villi, CT cells proliferate to form cell columns that migrate

into the interstitial tissue in the decidua and into the spiral arteries where they replace the endothelium. These are all extravillous trophoblasts. (f) The CT

cells and ST not at the contact site mostly degenerate but some remain on the chorionic membrane, which is attached to the amniotic membrane that con-

tains amniotic fluid surrounding the fetus. Placental transfer takes place in the chorionic villi and immunoregulation in the decidua.
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produce anti-D, causing HDFN [18]. The ultrastructure of

chorionic villi shows that fetal blood must pass through

breaks in the capillary endothelial cells, ECM and ST (Fig. 3

c) [17]. FMH are usually unpredictable [19]. Because the

fetoplacental blood volume is approximately 25, 150 and

400 ml at 20-, 30- and 40-weeks gestation, respectively,

the occurrence and volume of FMH increases as pregnancy

progresses. FMH are more likely at parturition and often in
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Fig. 2 Immunocytochemistry of decidua and placental chorionic villi. Cryostat sections were stained with (a) anti-HLA-G (purple) and (b) anti-(placental

alkaline phosphatase) PLAP (purple). The nuclei are counterstained with methyl green. (a) Extravillous trophoblast (EVT) cells in the decidua are HLA-G-posi-

tive, whilst syncytiotrophoblast (ST) in the chorionic villi is not stained. A syncytial knot (green) is between two villi. (b) On chorionic villi, ST membranes

and microvilli are PLAP positive, as is particulate material in the intervillous space where maternal blood circulates.
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Fig. 3 (a,b) Low power photomicrographs of a portion of a villus, dissected from a term placenta, washed free of maternal blood. Fetal blood vessels and

bulbous protuberances are evident in (b). (c) Electron micrograph of the outer portion of a villus, showing syncytiotrophoblast (ST) with nuclei and microvil-

li, extracellular matrix and a fetal capillary. Three types of fetoplacental material are released into maternal blood: fetal blood (only if the integrity of the

villus is lost), apoptotic ST nuclei and DNA, and ST microvillous membrane particles.
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larger bleeds [20, 21]. Only a minority of susceptible D-

negative women with D-positive babies make anti-D,

because most are not exposed to enough fetal RBC.

Approximately 0Æ1 ml or less was required to stimulate

anti-D formation [22]. The low volume of fetal RBC enter-

ing maternal blood during pregnancy also accounts for the

fact that the formation of anti-D is rare (<1%) during first

pregnancies [23]. The fact that the incidence of anti-HPA-

1a alloimmunization in first pregnancies of HPA-1a nega-

tive women was found higher (4% [24], 7Æ6% [25], 24%

[26]) when the number of fetal platelets encountered by the

maternal immune system from FMH must be very low,

suggests this antigen is highly immunogenic during

pregnancy.

The ST is a dynamic cellular tissue that is continually

remodelled. The nuclei of ST survive for approximately

3 weeks [27] when they then become apoptotic. This is

characterized by the appearance of pyknotic (odd shaped)

nuclei, condensation of chromatin at the periphery of the

nucleus [17], degradation of the nuclear membrane and

nuclear shrinkage [28]. DNA fragmentation occurs; endo-

nucleases cleave DNA at internucleosomal linker regions

into short (�200 bp) fragments [29]. The apoptotic nuclei

collect into clusters in syncytial knots [30] that are then

extruded into maternal blood for disposal (Fig. 2a). Fibri-

noid material laid down from maternal blood covers

damaged areas of villi [31]. The syncytial layer is rapidly

replaced by fusion of underlying CT with ST to maintain

the integrity of the villous tissue and prevent haemorrhag-

es. The DNA released from these apoptotic placental ST

nuclei is the source of cell-free ‘fetal’ DNA used for non-

invasive fetal genotyping [32] of RHD [33], HPA-1A

[34, 35], SRY (gender) and other fetal genes.

Shedding of ST debris in the form of microparticulate

material is also a physiological process. Using antibodies to

a placental-specific molecule highly expressed on the ST

apical membrane, placental alkaline phosphatase (PLAP)

[36], it can be seen that this membrane appears ‘rough’

because of staining of the microvilli (Fig. 2b). An ultrahis-

tochemical study localized PLAP to the ST membrane and

microvilli [37]. PLAP enzyme activity in maternal plasma

rises during the third trimester [38]. PLAP-positive micro-

particles are present in the intervillous spaces where mater-

nal blood circulates (Fig. 2b). These ST membrane

fragments, vesicles or microparticles, here called syncytio-

trophoblast microparticles (STMP), are <500 nm [39] and

may have an important role in maternal systemic immu-

nity.

Functions of trophoblast

Trophoblast cells form the fetomaternal interface. EVT cells

are in contact with maternal tissue and cells in the decidua.

ST on the surface of the villi is bathed in maternal blood.

All trophoblast cells lack classical HLA class I A and B anti-

gens, suggesting a role in immune evasion, but their physi-

ological and immunological functions are quite dissimilar

at these two interfaces.

Immunoregulation by placental cells
in the decidua

Several mechanisms involving different cells and molecules

in decidual tissue are involved in maintaining placental

function and survival of the fetoplacental unit. First, mater-

nal natural killer (NK) cells, CD8+ cytotoxic T cells, macro-

phages and dendritic cells (DC) are affected by ligation with

HLA class I expressed on EVT, both HLA-C (classical) and,

importantly, HLA-G (non-classical). Second, the location

and function of maternal NK cells, Tregs and DCs are

altered by placental hormones. Most interactions downre-

gulate immune responses and promote tolerance by pre-

venting killing of allogeneic cells. In the first trimester, this

is essential for placental growth and tissue remodelling.

Uterine NK (uNK) cells have a slightly different pheno-

type to those in peripheral blood, being CD16dim and

CD56bright and they reside in the decidua at high concentra-

tion early in pregnancy, their proliferation stimulated by

hCG [40]. uNK cells express killer inhibitory receptors

(KIRs) specific for HLA class I on EVT. HLA-C on EVT inter-

acts with KIR2DL1,2,3 and KIR2DS1,2 (the sole activating

receptor) on uNK. There are two groups of HLA-C alleles:

C1 binds KIR2DL2,3 and C2 binds KIR2DL1 [41]. Some

KIR ⁄ HLA-C combinations lead to ineffective invasion of

EVT, associated with the disease of pre-eclampsia [42].

However, in HPA-1a alloimmunized pregnancies, no

KIR ⁄ HLA-Cw gene combinations were found to have a

detrimental or protective effect [43].

Uterine NK cells are also downregulated by interaction

with the non-classical HLA class I molecules expressed on

EVT. The most important is HLA-G that inhibits uNK

through KIR2DL4, NKG2A (CD94), p49 and immunoglobu-

lin-like transcript (ILT) receptor ILT2 (CD85j) on uNK cells

[41, 44]. HLA-E is present at low concentration on EVT and

binds NKG2A on uNK cells [41].

CD8+ effector memory T cells in the decidua are rendered

non-functional because production of cytotoxic molecules

is downregulated, thus sparing EVT from cytolysis [45].

Experimentally, activated CD8+ lymphocytes were trig-

gered into apoptosis by soluble rHLA-G1, mediated through

the CD95 ⁄ CD95 ligand (Fas ⁄ Fas ligand) pathway, suggest-

ing that this mechanism may explain the paucity of CD8+

cells in the decidua [46].

Maternal macrophages are present in the decidua

throughout pregnancy and secrete immunoregulatory mol-

ecules, interleukin (IL)-10 [47], IL-1Ra and indoleamine 2,3
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dioxygenase (IDO) [48]. (IDO catabolizes tryptophan and

suppresses T cells by reducing the concentration of this

essential amino acid required for their metabolism.) Decid-

ual macrophages express the inhibitory receptors ILT2 and

ILT4 that bind HLA-G dimers, recently identified on the

surface of first-trimester EVT [49].

Some DCs reside in the decidua but are rendered imma-

ture or tolerant by progesterone (produced by the placenta)

and experimentally by interacting with HLA-G through

ILT2 (LILRB1) [50]. The DCs secrete immunoregulatory

cytokines; IL-10 promotes Tregs, and IL-4, IL-10 and TGFb
drive T-cell differentiation down the T-helper (Th)2 ⁄ 3 path-

way, away from cytotoxic T cells [51].

Finally, Tregs (CD4+, CD25++) accumulate in the decidua

despite decreasing in the maternal circulation during preg-

nancy [52, 53], attracted by hCG [54]. Their concentration

in the decidua may reach 14% of the T cells, much higher

than in peripheral blood [55]. Lack of Tregs leads to rejec-

tion of the fetus [56].

Maternal cells in the decidua are not completely sup-

pressed, however. Macrophages actively recognize and

phagocytose pathogens, which is important in protection

against intrauterine infections [57].

Systemic immunomodulation

A state of mild systemic activation of the innate immune

system exists during pregnancy, especially in the third tri-

mester, with increased numbers of monocytes and granulo-

cytes found in maternal blood [58]. Monocytes from

pregnant women had enhanced production of IL-12 in vitro

compared with monocytes from non-pregnant women [59].

STMP shed into maternal blood may be responsible for this.

In vitro, STMP were found to stimulate the release by

monocytes of the inflammatory cytokines IL-1b, IL-6 and

IL-8 [60] and TNF-a, IL-12p70 and IL-18 [61] and by DC of

IL-6 and IL-8 [62]. Innate immunity and inflammation are

necessary for priming antigen-presenting cells (macro-

phages, DC) to initiate T-helper (Th) and B-cell immune

responses (Fig. 4).

Villous trophoblasts may also affect the systemic

immune system via production of cytokines. Isolated vil-

lous trophoblast cells (ST and CT) in culture were found to

secrete IL-10 [63–65], to express mRNA for IL-10, IL-4 and

IL-13 [65] and to produce IL-10 receptor mRNA and protein

[66] suggesting a strong Th2 bias of these cells. Progester-

one and hCG, hormones synthesized by ST, caused shifts of

immunity from Th1 (IL-2, IL-12, IL-15, interferon-c; cell-

mediated) to Th2 (IL-4, IL-5, IL-6, IL-10, IL-13; humoral)

[67]. NK cells were reduced in the blood of pregnant women

[58]. The number of Tregs in peripheral blood of pregnant

women was markedly elevated during early pregnancy,

then after mid-gestation returned to normal levels at term

[68], indicating different mechanisms operate at the begin-

ning of pregnancy, when the fetal–placental unit is being

established, and later, when fetal growth is of major impor-

tance.

Therefore, a complex mix of systemic immune activation

and a cytokine bias towards Th2, first proposed by Wegman

in 1993 [69], appears to be induced in pregnant women.

The low-level inflammatory state combined with skewing

towards humoral immunity may explain why antibody

responses towards small volumes of allogeneic fetal blood

cells are robust. Th1 cell-mediated immunity is, however,

somewhat compromised, evidenced by increased suscepti-

bility of pregnant women to viral (e.g. swine flu, H1N1) and

intracellular bacterial (e.g. listeria monocytogenes) infec-

tions, with the latter carrying a high risk of fetal loss if the

placenta is colonized.

Could STMP stimulate the maternal
anti-HPA-1a immune response?

The glycoprotein (GP) that carries the HPA-1 polymor-

phism (GPIIIa, CD61 or b3 integrin) was found biochemi-

cally to be expressed on the ST ‘brush border’ (i.e. STMP)

prepared from term placentas [70]. It was later shown to be

present on first-trimester ST as well as term ST by electron

microscopy [17]. On ST, GPIIIa is associated with CD51 (aV

integrin) and not with GPIIb (CD41, aIIb integrin) as the lat-

ter is expressed on platelets but was not detected on ST by

immunocytochemistry [71]. Binding of anti-HPA-1a to

these two complexes may differ.

STMP in maternal blood are likely to gain access to

lymph nodes and the spleen, where they could be endocyto-

sed by macrophages or DC. This endocytosis is non-spe-

cific; DCs are continually sampling their environment.

After antigen processing, peptides are presented on HLA

class II on the DC surface for presentation to CD4+ Th cells.

In FNAIT, there is a very strong HLA DRB3*0101 (DRw52a)

restriction of the HPA-1a antibody response [72]. Therefore,

peptides encompassing the polymorphic residues from

GPIIIa will be bound to DRB3*0101 molecules [73–75]. On

the DC surface, this HPA-1a-peptide complexed to HLA

would select HPA-1a-specific Th (CD4+) cells (Fig. 4). These

cells must have T-cell receptors (TCR) that recognize a com-

plex of HPA-1a peptide bound to DRB3*0101, the restrict-

ing HLA molecule. If the HPA-1a-specific Th cells receive

stimulation from the DC (cytokines and interaction with

membrane costimulatory receptors), the Th cells become

activated, proliferate and migrate to B-cell areas. HPA-1a-

specific T cells were identified in HPA-1a-immunized

women by culturing peripheral blood mononuclear cells

with HPA-1a peptides and measuring T-cell proliferation;

most of the pregnant and post-partum women studied

were found to have HPA-1a-specific T cells, whereas
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non-HPA-1a-immunized individuals did not [76]. These T-

cell responses were generally stronger during pregnancy

[76] than from non-pregnant women [77]. This illustrates

that exposure to HPA-1a during pregnancy stimulates spe-

cific immune responses in susceptible women.

Antibody response

B-lymphocyte responses are initiated by recognition of the

conformational shape of antigens by B-cell receptors

(BCRs). The BCR (surface IgM) binds antigen that mediates

endocytosis of the BCR–antigen complex followed by anti-

gen processing and presentation of peptides on HLA class II

for recognition by antigen-specific Th cells. Thus, to receive

help (activation) from Th cells, the B cells must present the

same peptide–HLA class II complex as the DC that initially

activated the Th cells (Fig. 4). Following help in the form of

cytokines and costimulatory molecules from these Th cells,

the antigen-specific B cells become activated, proliferate

and produce antibodies of the same specificity as their BCR.

Therefore, to produce an antibody that binds to HPA-1a on

platelets, the maternal B cells must have endocytosed HPA-

1a-positive platelets. These can only be encountered by the

maternal immune system by FMH. As mentioned earlier,

FMH are generally unpredictable, infrequent and small,

probably containing usually fewer than 25 · 106 fetal

platelets – a very small number to cause a primary immune

response in an adult. However, if antigen-specific Th cells

are already present in high numbers and ready to activate

the antigen-specific B cells, this low dose may be sufficient.

Pregnant women appear to make alloantibodies more

readily than transfused patients, considering the great dif-

ference in volumes of blood in FMH (rarely over 20 ml)

compared with transfusions. Interestingly, without prophy-

laxis, approximately 10–20% of susceptible (antigen mis-

matched) gravid women develop alloantibodies, 16% with

anti-D [78], 12% and 10% with anti-HPA-1a [26, 79] and

15% with anti-HLA [80], indicating a similar immunization

by FMH.

Maternal alloantibodies

Immunizations

The initial antibody response to an antigen is predomi-

nantly IgM, of high avidity and agglutinating activity but

relatively low specificity and affinity. Re-immunization

with antigen is required to mature the antibody response.

(This is the purpose of booster injections after vaccination.)

Thus, in order that high-titre maternal alloantibodies to

fetal blood alloantigens may develop, further doses of anti-

gen (i.e. via FMH) are required.

Class switching and affinity maturation

With further antigen encounter, the B cells switch antibody

class from IgM to IgG by selection of Cc genes for IgG, to

replace Cl (IgM) genes. The Cc3 gene (coding for IgG3) is

upstream of Cc1 (coding for IgG1); therefore, IgG3 may

convert to IgG1 but not the reverse. By a process of somatic

T cell B cell
YB Cell 

Receptor

HLA-class II
+ peptide

DC T Cell 
Receptor

CD4

CD3
HLA-class II
+ peptide

Y

IgG

STMP
aVβ3

Platelet
aIIbβ3

Leu33

IgM

Activation of DC 
by inflammation

Activation of 
T cell by DC

Activation of B 
cell by T cell

Fig. 4 The antibody response (summarized). Dendritic cells (DC) endocytose plasma and particulate matter non-specifically; the contents of the endocytotic

vacuoles are digested; peptides are bound to HLA class II molecules and presented on the cell surface for recognition by T-cell receptors (TCR) on CD4+ T-

helper (Th) lymphocytes. If the conformation of the TCR enables it to bind the peptide–HLA complex with high affinity and the Th cell receives stimulation

from the DC in the form of cytokines and cell-surface costimulatory molecules, the Th cell becomes activated. It then proliferates, and the clonal progeny

migrates to B cell-rich areas of lymph nodes and spleen. B cells recognize their cognate antigen through conformational binding of the B-cell receptor

(BCR; surface IgM) to the antigen. This stimulates endocytosis and then antigen processing and presentation in a similar way to that of the DC. If the B cells

are contacted by Th cells with the correct TCR to bind the peptide–HLA complex, the B cell will be activated by the Th cell, proliferate and secrete antibody

(IgM, IgG) of the same specificity as the BCR.
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mutation (point mutations of the variable regions of Ig),

affinity for antigen increases. The cytokine environment of

the B cells affects the class and subclass of antibody.

Because additional FMH may or may not occur, maturation

of the antibody response may be halted during this process

(Fig. 5), resulting in heterogeneity of alloantibody isotype,

titre and affinity among different antisera [81].

Isotype and functional activity

Most alloantibodies to red cells and platelets are IgG1,

sometimes IgG3 or a mixture [82, 83]. IgG is the immuno-

globulin class that has most effector functions, mediating

adherence, phagocytosis and lysis of IgG-coated cells by

IgG Fc receptors (FccR) on macrophages. Several FccR are

present on macrophages and granulocytes (neutrophils, eo-

sinophils, basophils, mast cells, NK cells) [84]. Complement

fixation on the opsonized target cell may also occur. IgG

enhances and accelerates the innate immune mechanisms

of destruction of target cells by these effector cells. IgG is

the only antibody class to cross the placenta to the fetus.

Glycosylation

The glycosylation of IgG also modulates its effector func-

tion [85]. The branched core oligosaccharide structure

attached to Asn297 on the CH2 domain of IgG has several

sugars that may or may not be present [86] (Fig. 6). Termi-

nal galactose is elevated on IgG of pregnant women [87]

and is even higher on umbilical cord (fetal) IgG [88]. Galac-

tose on IgG enhances effector cell activity by macrophages

[89]. In contrast, fucose reduces effector activity [90].

Affinity-purified IgG1 anti-HPA alloantibodies were found

to have less fucose and slightly higher galactose, compared

with normal serum IgG1 from the donors, thus enhancing

their pathogenicity [91]. This physiological elevation of

antibody function may have evolved to help protect preg-

nant women from pathogens whilst their immune systems

are in a state of mild systemic immunoregulation.

Concluding remarks

Human pregnancy is unique in that it allows the growth of

a fetus across highly polymorphic HLA mismatches whilst

the maternal and fetal immune systems are not compro-

mised. The structure of the placenta and its effect on mater-

nal immune cells drives this change. Skewing of maternal

systemic immunity towards humoral responses ensures

development of protective antibodies. Materno-fetal–pla-

cental transfer of IgG confers passive immunity to the

infant. Formation of alloantibodies to alloantigens on fetal

GlcNAc  N-acetylglucosamine 
Man        Mannose  
Gal         Galactose 
NeuAc    Sialic acid  
Fuc         Fucose 

Asn 297 

IgG
Oligosaccharide of human IgG Fc

32 different 
structures 
(glycoforms)

Fig. 6 Diagram of the composition of sugars of the oligosaccharide chain

attached to Asparagine 297 in the CH2 (constant) domains of IgG. The core

structure terminates in GlcNAc, at the dotted lines, and complexity arises

because additional sugars (galactose, sialic acid, fucose and bisecting sialic

acid) may or may not be present.

Primary response Tertiary response
1/10 000

1/1000

1/100

1/10

1/1

GgIMgI

Weeks

IgM and IgG Titre  

41216 8 102 4 
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Fig. 5 Antibody development. The diagram represents the titre and Ig class of an alloantibody formed in response to one or more immunizations in the

form of fetomaternal haemorrhage (FMHs). If there are no secondary or tertiary FMH, the maternal antibody will remain of low titre (weak) and predomi-

nantly IgM. (The scale is arbitrary.)
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blood cells acquired by FMH which then result in alloim-

mune cytopenias is, unfortunately, a consequence of physi-

ological rather than pathological processes.
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